五、Python绘图
Python常用的绘图工具包括:matplotlib
, seaborn
, plotly
等,以及一些其他专用于绘制某类图如词云图等的包,描绘绘图轨迹的turtle
包等。本章节将会使用一些例子由易到难的阐述绘图的经典小例子,目前共收录21
个。
1 turtle绘制奥运五环图
turtle绘图的函数非常好用,基本看到函数名字,就能知道它的含义,下面使用turtle,仅用15行代码来绘制奥运五环图。
1 导入库
import turtle as p
2 定义画圆函数
def drawCircle(x,y,c='red'):
p.pu()# 抬起画笔
p.goto(x,y) # 绘制圆的起始位置
p.pd()# 放下画笔
p.color(c)# 绘制c色圆环
p.circle(30,360) #绘制圆:半径,角度
3 画笔基本设置
p = turtle
p.pensize(3) # 画笔尺寸设置3
4 绘制五环图
调用画圆函数
drawCircle(0,0,'blue')
drawCircle(60,0,'black')
drawCircle(120,0,'red')
drawCircle(90,-30,'green')
drawCircle(30,-30,'yellow')
p.done()
结果:
2 turtle绘制漫天雪花
导入模块
导入 turtle
库和 python的 random
import turtle as p
import random
绘制雪花
def snow(snow_count):
p.hideturtle()
p.speed(500)
p.pensize(2)
for i in range(snow_count):
r = random.random()
g = random.random()
b = random.random()
p.pencolor(r, g, b)
p.pu()
p.goto(random.randint(-350, 350), random.randint(1, 270))
p.pd()
dens = random.randint(8, 12)
snowsize = random.randint(10, 14)
for _ in range(dens):
p.forward(snowsize) # 向当前画笔方向移动snowsize像素长度
p.backward(snowsize) # 向当前画笔相反方向移动snowsize像素长度
p.right(360 / dens) # 顺时针移动360 / dens度
绘制地面
def ground(ground_line_count):
p.hideturtle()
p.speed(500)
for i in range(ground_line_count):
p.pensize(random.randint(5, 10))
x = random.randint(-400, 350)
y = random.randint(-280, -1)
r = -y / 280
g = -y / 280
b = -y / 280
p.pencolor(r, g, b)
p.penup() # 抬起画笔
p.goto(x, y) # 让画笔移动到此位置
p.pendown() # 放下画笔
p.forward(random.randint(40, 100)) # 眼当前画笔方向向前移动40~100距离
主函数
def main():
p.setup(800, 600, 0, 0)
# p.tracer(False)
p.bgcolor("black")
snow(30)
ground(30)
# p.tracer(True)
p.mainloop()
main()
动态图结果展示:
3 wordcloud词云图
import hashlib
import pandas as pd
from wordcloud import WordCloud
geo_data=pd.read_excel(r"../data/geo_data.xlsx")
print(geo_data)
# 0 深圳
# 1 深圳
# 2 深圳
# 3 深圳
# 4 深圳
# 5 深圳
# 6 深圳
# 7 广州
# 8 广州
# 9 广州
words = ','.join(x for x in geo_data['city'] if x != []) #筛选出非空列表值
wc = WordCloud(
background_color="green", #背景颜色"green"绿色
max_words=100, #显示最大词数
font_path='./fonts/simhei.ttf', #显示中文
min_font_size=5,
max_font_size=100,
width=500 #图幅宽度
)
x = wc.generate(words)
x.to_file('../data/geo_data.png')
4 plotly画柱状图和折线图
#柱状图+折线图
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=[0, 1, 2, 3, 4, 5],
y=[1.5, 1, 1.3, 0.7, 0.8, 0.9]
))
fig.add_trace(
go.Bar(
x=[0, 1, 2, 3, 4, 5],
y=[2, 0.5, 0.7, -1.2, 0.3, 0.4]
))
fig.show()
![]
5 seaborn热力图
# 导入库
import seaborn as sns
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 生成数据集
data = np.random.random((6,6))
np.fill_diagonal(data,np.ones(6))
features = ["prop1","prop2","prop3","prop4","prop5", "prop6"]
data = pd.DataFrame(data, index = features, columns=features)
print(data)
# 绘制热力图
heatmap_plot = sns.heatmap(data, center=0, cmap='gist_rainbow')
plt.show()
6 matplotlib折线图
模块名称:example_utils.py,里面包括三个函数,各自功能如下:
import matplotlib.pyplot as plt
# 创建画图fig和axes
def setup_axes():
fig, axes = plt.subplots(ncols=3, figsize=(6.5,3))
for ax in fig.axes:
ax.set(xticks=[], yticks=[])
fig.subplots_adjust(wspace=0, left=0, right=0.93)
return fig, axes
# 图片标题
def title(fig, text, y=0.9):
fig.suptitle(text, size=14, y=y, weight='semibold', x=0.98, ha='right',
bbox=dict(boxstyle='round', fc='floralwhite', ec='#8B7E66',
lw=2))
# 为数据添加文本注释
def label(ax, text, y=0):
ax.annotate(text, xy=(0.5, 0.00), xycoords='axes fraction', ha='center',
style='italic',
bbox=dict(boxstyle='round', facecolor='floralwhite',
ec='#8B7E66'))
import numpy as np
import matplotlib.pyplot as plt
import example_utils
x = np.linspace(0, 10, 100)
fig, axes = example_utils.setup_axes()
for ax in axes:
ax.margins(y=0.10)
# 子图1 默认plot多条线,颜色系统分配
for i in range(1, 6):
axes[0].plot(x, i * x)
# 子图2 展示线的不同linestyle
for i, ls in enumerate(['-', '--', ':', '-.']):
axes[1].plot(x, np.cos(x) + i, linestyle=ls)
# 子图3 展示线的不同linestyle和marker
for i, (ls, mk) in enumerate(zip(['', '-', ':'], ['o', '^', 's'])):
axes[2].plot(x, np.cos(x) + i * x, linestyle=ls, marker=mk, markevery=10)
# 设置标题
# example_utils.title(fig, '"ax.plot(x, y, ...)": Lines and/or markers', y=0.95)
# 保存图片
fig.savefig('plot_example.png', facecolor='none')
# 展示图片
plt.show()
7 matplotlib散点图
对应代码:
"""
散点图的基本用法
"""
import numpy as np
import matplotlib.pyplot as plt
import example_utils
# 随机生成数据
np.random.seed(1874)
x, y, z = np.random.normal(0, 1, (3, 100))
t = np.arctan2(y, x)
size = 50 * np.cos(2 * t)**2 + 10
fig, axes = example_utils.setup_axes()
# 子图1
axes[0].scatter(x, y, marker='o', color='darkblue', facecolor='white', s=80)
example_utils.label(axes[0], 'scatter(x, y)')
# 子图2
axes[1].scatter(x, y, marker='s', color='darkblue', s=size)
example_utils.label(axes[1], 'scatter(x, y, s)')
# 子图3
axes[2].scatter(x, y, s=size, c=z, cmap='gist_ncar')
example_utils.label(axes[2], 'scatter(x, y, s, c)')
# example_utils.title(fig, '"ax.scatter(...)": Colored/scaled markers',
# y=0.95)
fig.savefig('scatter_example.png', facecolor='none')
plt.show()
8 matplotlib柱状图
对应代码:
import numpy as np
import matplotlib.pyplot as plt
import example_utils
def main():
fig, axes = example_utils.setup_axes()
basic_bar(axes[0])
tornado(axes[1])
general(axes[2])
# example_utils.title(fig, '"ax.bar(...)": Plot rectangles')
fig.savefig('bar_example.png', facecolor='none')
plt.show()
# 子图1
def basic_bar(ax):
y = [1, 3, 4, 5.5, 3, 2]
err = [0.2, 1, 2.5, 1, 1, 0.5]
x = np.arange(len(y))
ax.bar(x, y, yerr=err, color='lightblue', ecolor='black')
ax.margins(0.05)
ax.set_ylim(bottom=0)
example_utils.label(ax, 'bar(x, y, yerr=e)')
# 子图2
def tornado(ax):
y = np.arange(8)
x1 = y + np.random.random(8) + 1
x2 = y + 3 * np.random.random(8) + 1
ax.barh(y, x1, color='lightblue')
ax.barh(y, -x2, color='salmon')
ax.margins(0.15)
example_utils.label(ax, 'barh(x, y)')
# 子图3
def general(ax):
num = 10
left = np.random.randint(0, 10, num)
bottom = np.random.randint(0, 10, num)
width = np.random.random(num) + 0.5
height = np.random.random(num) + 0.5
ax.bar(left, height, width, bottom, color='salmon')
ax.margins(0.15)
example_utils.label(ax, 'bar(l, h, w, b)')
main()
9 matplotlib等高线图
对应代码:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cbook import get_sample_data
import example_utils
z = np.load(get_sample_data('bivariate_normal.npy'))
fig, axes = example_utils.setup_axes()
axes[0].contour(z, cmap='gist_earth')
example_utils.label(axes[0], 'contour')
axes[1].contourf(z, cmap='gist_earth')
example_utils.label(axes[1], 'contourf')
axes[2].contourf(z, cmap='gist_earth')
cont = axes[2].contour(z, colors='black')
axes[2].clabel(cont, fontsize=6)
example_utils.label(axes[2], 'contourf + contour\n + clabel')
# example_utils.title(fig, '"contour, contourf, clabel": Contour/label 2D data',
# y=0.96)
fig.savefig('contour_example.png', facecolor='none')
plt.show()
10 imshow图
对应代码:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.cbook import get_sample_data
from mpl_toolkits import axes_grid1
import example_utils
def main():
fig, axes = setup_axes()
plot(axes, *load_data())
# example_utils.title(fig, '"ax.imshow(data, ...)": Colormapped or RGB arrays')
fig.savefig('imshow_example.png', facecolor='none')
plt.show()
def plot(axes, img_data, scalar_data, ny):
# 默认线性插值
axes[0].imshow(scalar_data, cmap='gist_earth', extent=[0, ny, ny, 0])
# 最近邻插值
axes[1].imshow(scalar_data, cmap='gist_earth', interpolation='nearest',
extent=[0, ny, ny, 0])
# 展示RGB/RGBA数据
axes[2].imshow(img_data)
def load_data():
img_data = plt.imread(get_sample_data('5.png'))
ny, nx, nbands = img_data.shape
scalar_data = np.load(get_sample_data('bivariate_normal.npy'))
return img_data, scalar_data, ny
def setup_axes():
fig = plt.figure(figsize=(6, 3))
axes = axes_grid1.ImageGrid(fig, [0, 0, .93, 1], (1, 3), axes_pad=0)
for ax in axes:
ax.set(xticks=[], yticks=[])
return fig, axes
main()
11 pyecharts绘制仪表盘
使用pip install pyecharts 安装,版本为 v1.6,pyecharts绘制仪表盘,只需要几行代码:
from pyecharts import charts
# 仪表盘
gauge = charts.Gauge()
gauge.add('Python小例子', [('Python机器学习', 30), ('Python基础', 70.),
('Python正则', 90)])
gauge.render(path="./data/仪表盘.html")
print('ok')
仪表盘中共展示三项,每项的比例为30%,70%,90%,如下图默认名称显示第一项:Python机器学习,完成比例为30%
12 pyecharts漏斗图
from pyecharts import options as opts
from pyecharts.charts import Funnel, Page
from random import randint
def funnel_base() -> Funnel:
c = (
Funnel()
.add("豪车", [list(z) for z in zip(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'],
[randint(1, 20) for _ in range(7)])])
.set_global_opts(title_opts=opts.TitleOpts(title="豪车漏斗图"))
)
return c
funnel_base().render('./img/car_fnnel.html')
以7种车型及某个属性值绘制的漏斗图,属性值大越靠近漏斗的大端。
13 pyecharts日历图
import datetime
import random
from pyecharts import options as opts
from pyecharts.charts import Calendar
def calendar_interval_1() -> Calendar:
begin = datetime.date(2019, 1, 1)
end = datetime.date(2019, 12, 27)
data = [
[str(begin + datetime.timedelta(days=i)), random.randint(1000, 25000)]
for i in range(0, (end - begin).days + 1, 2) # 隔天统计
]
calendar = (
Calendar(init_opts=opts.InitOpts(width="1200px")).add(
"", data, calendar_opts=opts.CalendarOpts(range_="2019"))
.set_global_opts(
title_opts=opts.TitleOpts(title="Calendar-2019年步数统计"),
visualmap_opts=opts.VisualMapOpts(
max_=25000,
min_=1000,
orient="horizontal",
is_piecewise=True,
pos_top="230px",
pos_left="100px",
),
)
)
return calendar
calendar_interval_1().render('./img/calendar.html')
绘制2019年1月1日到12月27日的步行数,官方给出的图形宽度900px
不够,只能显示到9月份,本例使用opts.InitOpts(width="1200px")
做出微调,并且visualmap
显示所有步数,每隔一天显示一次:
14 pyecharts绘制graph图
import json
import os
from pyecharts import options as opts
from pyecharts.charts import Graph, Page
def graph_base() -> Graph:
nodes = [
{"name": "cus1", "symbolSize": 10},
{"name": "cus2", "symbolSize": 30},
{"name": "cus3", "symbolSize": 20}
]
links = []
for i in nodes:
if i.get('name') == 'cus1':
continue
for j in nodes:
if j.get('name') == 'cus1':
continue
links.append({"source": i.get("name"), "target": j.get("name")})
c = (
Graph()
.add("", nodes, links, repulsion=8000)
.set_global_opts(title_opts=opts.TitleOpts(title="customer-influence"))
)
return c
构建图,其中客户点1与其他两个客户都没有关系(link
),也就是不存在有效边:
15 pyecharts水球图
from pyecharts import options as opts
from pyecharts.charts import Liquid, Page
from pyecharts.globals import SymbolType
def liquid() -> Liquid:
c = (
Liquid()
.add("lq", [0.67, 0.30, 0.15])
.set_global_opts(title_opts=opts.TitleOpts(title="Liquid"))
)
return c
liquid().render('./img/liquid.html')
水球图的取值[0.67, 0.30, 0.15]
表示下图中的三个波浪线
,一般代表三个百分比:
16 pyecharts饼图
from pyecharts import options as opts
from pyecharts.charts import Pie
from random import randint
def pie_base() -> Pie:
c = (
Pie()
.add("", [list(z) for z in zip(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'],
[randint(1, 20) for _ in range(7)])])
.set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例"))
.set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {c}"))
)
return c
pie_base().render('./img/pie_pyecharts.html')
17 pyecharts极坐标图
import random
from pyecharts import options as opts
from pyecharts.charts import Page, Polar
def polar_scatter0() -> Polar:
data = [(alpha, random.randint(1, 100)) for alpha in range(101)] # r = random.randint(1, 100)
print(data)
c = (
Polar()
.add("", data, type_="bar", label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="Polar"))
)
return c
polar_scatter0().render('./img/polar.html')
极坐标表示为(夹角,半径)
,如(6,94)表示夹角为6,半径94的点:
18 pyecharts词云图
from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
from pyecharts.globals import SymbolType
words = [
("Python", 100),
("C++", 80),
("Java", 95),
("R", 50),
("JavaScript", 79),
("C", 65)
]
def wordcloud() -> WordCloud:
c = (
WordCloud()
# word_size_range: 单词字体大小范围
.add("", words, word_size_range=[20, 100], shape='cardioid')
.set_global_opts(title_opts=opts.TitleOpts(title="WordCloud"))
)
return c
wordcloud().render('./img/wordcloud.html')
("C",65)
表示在本次统计中C语言出现65次
19 pyecharts系列柱状图
from pyecharts import options as opts
from pyecharts.charts import Bar
from random import randint
def bar_series() -> Bar:
c = (
Bar()
.add_xaxis(['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉'])
.add_yaxis("销量", [randint(1, 20) for _ in range(7)])
.add_yaxis("产量", [randint(1, 20) for _ in range(7)])
.set_global_opts(title_opts=opts.TitleOpts(title="Bar的主标题", subtitle="Bar的副标题"))
)
return c
bar_series().render('./img/bar_series.html')
20 pyecharts热力图
import random
from pyecharts import options as opts
from pyecharts.charts import HeatMap
def heatmap_car() -> HeatMap:
x = ['宝马', '法拉利', '奔驰', '奥迪', '大众', '丰田', '特斯拉']
y = ['中国','日本','南非','澳大利亚','阿根廷','阿尔及利亚','法国','意大利','加拿大']
value = [[i, j, random.randint(0, 100)]
for i in range(len(x)) for j in range(len(y))]
c = (
HeatMap()
.add_xaxis(x)
.add_yaxis("销量", y, value)
.set_global_opts(
title_opts=opts.TitleOpts(title="HeatMap"),
visualmap_opts=opts.VisualMapOpts(),
)
)
return c
heatmap_car().render('./img/heatmap_pyecharts.html')
热力图描述的实际是三维关系,x轴表示车型,y轴表示国家,每个色块的颜色值代表销量,颜色刻度尺显示在左下角,颜色越红表示销量越大。
21 matplotlib绘制动画
matplotlib
是python中最经典的绘图包,里面animation
模块能绘制动画。
首先导入小例子使用的模块:
from matplotlib import pyplot as plt
from matplotlib import animation
from random import randint, random
生成数据,frames_count
是帧的个数,data_count
每个帧的柱子个数
class Data:
data_count = 32
frames_count = 2
def __init__(self, value):
self.value = value
self.color = (0.5, random(), random()) #rgb
# 造数据
@classmethod
def create(cls):
return [[Data(randint(1, cls.data_count)) for _ in range(cls.data_count)]
for frame_i in range(cls.frames_count)]
绘制动画:animation.FuncAnimation
函数的回调函数的参数fi
表示第几帧,注意要调用axs.cla()
清除上一帧。
def draw_chart():
fig = plt.figure(1, figsize=(16, 9))
axs = fig.add_subplot(111)
axs.set_xticks([])
axs.set_yticks([])
# 生成数据
frames = Data.create()
def animate(fi):
axs.cla() # clear last frame
axs.set_xticks([])
axs.set_yticks([])
return axs.bar(list(range(Data.data_count)), # X
[d.value for d in frames[fi]], # Y
1, # width
color=[d.color for d in frames[fi]] # color
)
# 动画展示
anim = animation.FuncAnimation(fig, animate, frames=len(frames))
plt.show()
draw_chart()
22 pyecharts绘图属性设置方法
昨天一位读者朋友问我pyecharts
中,y轴如何显示在右侧。先说下如何设置,同时阐述例子君是如何找到找到此属性的。
这是pyecharts中一般的绘图步骤:
from pyecharts.faker import Faker
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
def bar_base() -> Bar:
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
)
return c
bar_base().render('./bar.html')
那么,如何设置y轴显示在右侧,添加一行代码:
.set_global_opts(yaxis_opts=opts.AxisOpts(position='right'))
也就是:
c = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
.set_global_opts(yaxis_opts=opts.AxisOpts(position='right'))
)
如何锁定这个属性,首先应该在set_global_opts函数的参数中找,它一共有以下11
个设置参数,它们位于模块charts.py
:
title_opts: types.Title = opts.TitleOpts(),
legend_opts: types.Legend = opts.LegendOpts(),
tooltip_opts: types.Tooltip = None,
toolbox_opts: types.Toolbox = None,
brush_opts: types.Brush = None,
xaxis_opts: types.Axis = None,
yaxis_opts: types.Axis = None,
visualmap_opts: types.VisualMap = None,
datazoom_opts: types.DataZoom = None,
graphic_opts: types.Graphic = None,
axispointer_opts: types.AxisPointer = None,
因为是设置y轴显示在右侧,自然想到设置参数yaxis_opts
,因为其类型为types.Axis
,所以再进入types.py
,同时定位到Axis
:
Axis = Union[opts.AxisOpts, dict, None]
Union是pyecharts中可容纳多个类型的并集列表,也就是Axis可能为opts.AxisOpt
, dict
, 或None
三种类型。查看第一个opts.AxisOpt
类,它共定义以下25
个参数:
type_: Optional[str] = None,
name: Optional[str] = None,
is_show: bool = True,
is_scale: bool = False,
is_inverse: bool = False,
name_location: str = "end",
name_gap: Numeric = 15,
name_rotate: Optional[Numeric] = None,
interval: Optional[Numeric] = None,
grid_index: Numeric = 0,
position: Optional[str] = None,
offset: Numeric = 0,
split_number: Numeric = 5,
boundary_gap: Union[str, bool, None] = None,
min_: Union[Numeric, str, None] = None,
max_: Union[Numeric, str, None] = None,
min_interval: Numeric = 0,
max_interval: Optional[Numeric] = None,
axisline_opts: Union[AxisLineOpts, dict, None] = None,
axistick_opts: Union[AxisTickOpts, dict, None] = None,
axislabel_opts: Union[LabelOpts, dict, None] = None,
axispointer_opts: Union[AxisPointerOpts, dict, None] = None,
name_textstyle_opts: Union[TextStyleOpts, dict, None] = None,
splitarea_opts: Union[SplitAreaOpts, dict, None] = None,
splitline_opts: Union[SplitLineOpts, dict] = SplitLineOpts(),
观察后尝试参数position
,结合官档:https://pyecharts.org/#/zh-cn/global_options?id=axisopts%ef%bc%9a%e5%9d%90%e6%a0%87%e8%bd%b4%e9%85%8d%e7%bd%ae%e9%a1%b9
,介绍x轴设置position时有bottom, top, 所以y轴设置很可能就是left,right.
OK!
23 pyecharts绘图属性设置方法(下)
分步讲解如何配置为上图
1)柱状图显示效果动画对应控制代码:
animation_opts=opts.AnimationOpts(
animation_delay=500, animation_easing="cubicOut"
)
2)柱状图显示主题对应控制代码:
theme=ThemeType.MACARONS
3)添加x轴对应的控制代码:
add_xaxis( ["草莓", "芒果", "葡萄", "雪梨", "西瓜", "柠檬", "车厘子"]
4)添加y轴对应的控制代码:
add_yaxis("A", Faker.values(),
5)修改柱间距对应的控制代码:
category_gap="50%"
6)A系列柱子是否显示对应的控制代码:
is_selected=True
7)A系列柱子颜色渐变对应的控制代码:
itemstyle_opts={
"normal": {
"color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""),
"barBorderRadius": [6, 6, 6, 6],
"shadowColor": 'rgb(0, 160, 221)',
}}
8)A系列柱子最大和最小值标记点
对应的控制代码:
markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_="max", name="最大值"),
opts.MarkPointItem(type_="min", name="最小值"),
]
)
9)A系列柱子最大和最小值标记线
对应的控制代码:
markline_opts=opts.MarkLineOpts(
data=[
opts.MarkLineItem(type_="min", name="最小值"),
opts.MarkLineItem(type_="max", name="最大值")
]
)
10)柱状图标题对应的控制代码:
title_opts=opts.TitleOpts(title="Bar-参数使用例子"
11)柱状图非常有用的toolbox显示对应的控制代码:
toolbox_opts=opts.ToolboxOpts()
12)Y轴显示在右侧对应的控制代码:
yaxis_opts=opts.AxisOpts(position="right")
13)Y轴名称对应的控制代码:
yaxis_opts=opts.AxisOpts(,name="Y轴")
14)数据轴区域放大缩小设置对应的控制代码:
datazoom_opts=opts.DataZoomOpts()
完整代码
def bar_border_radius():
c = (
Bar(init_opts=opts.InitOpts(
animation_opts=opts.AnimationOpts(
animation_delay=500, animation_easing="cubicOut"
),
theme=ThemeType.MACARONS))
.add_xaxis( ["草莓", "芒果", "葡萄", "雪梨", "西瓜", "柠檬", "车厘子"])
.add_yaxis("A", Faker.values(),category_gap="50%",markpoint_opts=opts.MarkPointOpts(),is_selected=True)
.set_series_opts(itemstyle_opts={
"normal": {
"color": JsCode("""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""),
"barBorderRadius": [6, 6, 6, 6],
"shadowColor": 'rgb(0, 160, 221)',
}}, markpoint_opts=opts.MarkPointOpts(
data=[
opts.MarkPointItem(type_="max", name="最大值"),
opts.MarkPointItem(type_="min", name="最小值"),
]
),markline_opts=opts.MarkLineOpts(
data=[
opts.MarkLineItem(type_="min", name="最小值"),
opts.MarkLineItem(type_="max", name="最大值")
]
))
.set_global_opts(title_opts=opts.TitleOpts(title="Bar-参数使用例子"), toolbox_opts=opts.ToolboxOpts(),yaxis_opts=opts.AxisOpts(position="right",name="Y轴"),datazoom_opts=opts.DataZoomOpts(),)
)
return c
bar_border_radius().render()
24 pyecharts原来可以这样快速入门(上)
最近两天,翻看下pyecharts
的源码,感叹这个框架写的真棒,思路清晰,设计简洁,通俗易懂,推荐读者们有空也阅读下。
bee君是被pyecharts官档介绍-五个特性所吸引:
1)简洁的 API 设计,使用如丝滑般流畅,支持链式调用;
2)囊括了 30+ 种常见图表,应有尽有;
3)支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab;
4)可轻松集成至 Flask,Django 等主流 Web 框架;
5)高度灵活的配置项,可轻松搭配出精美的图表
pyecharts 确实也如上面五个特性介绍那样,使用起来非常方便。那么,有些读者不禁好奇会问,pyecharts 是如何做到的?
我们不妨从pyecharts官档5分钟入门pyecharts
章节开始,由表(最高层函数)及里(底层函数也就是所谓的源码
),一探究竟。
官方第一个例子
不妨从官档给出的第一个例子说起,
from pyecharts.charts import Bar
bar = Bar()
bar.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
bar.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
# render 会生成本地 HTML 文件,默认会在当前目录生成 render.html 文件
# 也可以传入路径参数,如 bar.render("mycharts.html")
bar.render()
第一行代码:from pyecharts.charts import Bar
,先上一张源码中包的结构图
:
bar.py
模块中定义了类Bar(RectChart)
,如下所示:
class Bar(RectChart):
"""
<<< Bar Chart >>>
Bar chart presents categorical data with rectangular bars
with heights or lengths proportional to the values that they represent.
"""
这里有读者可能会有以下两个问题:
1)为什么根据图1中的包结构,为什么不这么写:from pyecharts.charts.basic_charts import Bar
答:请看图2中__init__.py
模块,文件内容如下,看到导入charts
包,而非charts.basic_charts
from pyecharts import charts, commons, components, datasets, options, render, scaffold
from pyecharts._version import __author__, __version__
2)Bar(RectChart)
是什么意思
答:RectChart是Bar的子类
下面4行代码,很好理解,没有特殊性。
pyecharts主要两个大版本,0.5基版本和1.0基版本,从1.0基版本开始全面支持链式调用
,bee君也很喜爱这种链式调用模式,代码看起来更加紧凑:
from pyecharts.charts import Bar
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
bar.render()
实现链式调用
也没有多难,保证返回类本身self
即可,如果非要有其他返回对象,那么要提到类内以便被全局共享,
add_xaxis函数返回self
def add_xaxis(self, xaxis_data: Sequence):
self.options["xAxis"][0].update(data=xaxis_data)
self._xaxis_data = xaxis_data
return self
add_yaxis函数同样返回self
.
25 pyecharts原来可以这样快速入门(中)
一切皆options
pyecharts用起来很爽的另一个重要原因,参数配置项
封装的非常nice,通过定义一些列基础的配置组件,比如global_options.py
模块中定义的配置对象有以下27
个
AngleAxisItem,
AngleAxisOpts,
AnimationOpts,
Axis3DOpts,
AxisLineOpts,
AxisOpts,
AxisPointerOpts,
AxisTickOpts,
BrushOpts,
CalendarOpts,
DataZoomOpts,
Grid3DOpts,
GridOpts,
InitOpts,
LegendOpts,
ParallelAxisOpts,
ParallelOpts,
PolarOpts,
RadarIndicatorItem,
RadiusAxisItem,
RadiusAxisOpts,
SingleAxisOpts,
TitleOpts,
ToolBoxFeatureOpts,
ToolboxOpts,
TooltipOpts,
VisualMapOpts,
26 pyecharts原来可以这样快速入门(下)
第二个例子
了解上面的配置对象后,再看官档给出的第二个例子,与第一个例子相比,增加了一行代码:set_global_opts
函数
from pyecharts.charts import Bar
from pyecharts import options as opts
# V1 版本开始支持链式调用
# 你所看到的格式其实是 `black` 格式化以后的效果
# 可以执行 `pip install black` 下载使用
bar = (
Bar()
.add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
.add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
.set_global_opts(title_opts=opts.TitleOpts(title="主标题", subtitle="副标题"))
bar.render()
set_global_opts
函数在pyecharts中被高频使用,它定义在底层基础模块Chart.py
中,它是前面说到的RectChart
的子类,Bar
类的孙子类。
浏览下函数的参数:
def set_global_opts(
self,
title_opts: types.Title = opts.TitleOpts(),
legend_opts: types.Legend = opts.LegendOpts(),
tooltip_opts: types.Tooltip = None,
toolbox_opts: types.Toolbox = None,
brush_opts: types.Brush = None,
xaxis_opts: types.Axis = None,
yaxis_opts: types.Axis = None,
visualmap_opts: types.VisualMap = None,
datazoom_opts: types.DataZoom = None,
graphic_opts: types.Graphic = None,
axispointer_opts: types.AxisPointer = None,
):
以第二个参数title_opts
为例,说明pyecharts
中参数赋值的风格。
首先,title_opts
是默认参数
,默认值为opts.TitleOpts()
,这个对象在上一节中,我们提到过,是global_options.py
模块中定义的27
个配置对象种的一个。
其次,pyecharts中为了增强代码可读性,参数的类型都显示的给出。此处它的类型为:types.Title
. 这是什么类型?它的类型不是TitleOpts
吗?不急,看看Title这个类型的定义:
Title = Union[opts.TitleOpts, dict]
原来Title
可能是opts.TitleOpts
, 也可能是python原生的dict
. 通过Union
实现的就是这种类型效果
。所以这就解释了官档中为什么说也可以使用字典配置参数的问题,如下官档:
# 或者直接使用字典参数
# .set_global_opts(title_opts={"text": "主标题", "subtext": "副标题"})
)
最后,真正的关于图表的标题相关的属性都被封装到TitleOpts类中,比如title
,subtitle
属性,查看源码,TitleOpts对象还有更多属性:
class TitleOpts(BasicOpts):
def __init__(
self,
title: Optional[str] = None,
title_link: Optional[str] = None,
title_target: Optional[str] = None,
subtitle: Optional[str] = None,
subtitle_link: Optional[str] = None,
subtitle_target: Optional[str] = None,
pos_left: Optional[str] = None,
pos_right: Optional[str] = None,
pos_top: Optional[str] = None,
pos_bottom: Optional[str] = None,
padding: Union[Sequence, Numeric] = 5,
item_gap: Numeric = 10,
title_textstyle_opts: Union[TextStyleOpts, dict, None] = None,
subtitle_textstyle_opts: Union[TextStyleOpts, dict, None] = None,
):
OK. 到此跟随5分钟入门的官档,结合两个例子实现的背后源码,探讨了:
1)与包结构组织相关的__init__.py
;
2)类的继承关系:Bar->RectChart->Chart;
3)链式调用;
4)重要的参数配置包options
,以TitleOpts类为例,set_global_opts
将它装载到Bar类中实现属性自定义。